สารสนเทศ เบี้องต้น
วันอาทิตย์ที่ 6 กรกฎาคม พ.ศ. 2557
วันอังคารที่ 17 มิถุนายน พ.ศ. 2557
วันเสาร์ที่ 14 มิถุนายน พ.ศ. 2557
วันอาทิตย์ที่ 1 มิถุนายน พ.ศ. 2557
การสื่อสารแบบอะซิงโคนัสและซิงโคนัส
ซิงโครนัส และ อะซิงโคนัส
การสื่อสารแบบอะซิงโคนัส (Asynchronous Transmission)
การสื่อสารแบบอะซิงโคนัส หรือเรียกอีกอย่างหนึ่งว่าเป็น การสื่อสารแบบระบุจุดเริ่มต้น และจุดสิ้นสุด (Start-Stop Transmission) ลักษณะของสัญญาณที่ใช้ในการติดต่อสื่อสารกันจะประกอบไปด้วย บิตเริ่มต้น (start bit) บิตของข้อมูลที่สื่อสาร (transmission data) จำนวน 8 บิต บิตตรวจข้อผิดพลาด(parity bit) และบิตสิ้นสุด (stop bit) สำหรับบิตตรวจสอบข้อผิดพลาดจะใช้หรือไม่ใช้ก็ได้ ดังนั้นสัญญาณจึงต้องประกอบด้วยส่วนประกอบอย่างน้อย 3 ส่วน ดังรูป
รูปที่ 6 การสื่อสารแบบอะซิงโคนัสที่ไม่ได้ใช้พารีตี้บิต
รูปที่ 7 การสื่อสารแบบอะซิงโคนัสที่ใช้พารีตี้บิต
จากรูปจะเห็นว่าขณะที่ไม่มีข้อมูลส่งออกมาสถานะของการส่งจะเป็นแบบว่าง (Idle) ซึ่งจะมีระดับของสัญญาณเป็น 1 ตลอดเวลา เพื่อความแน่ใจว่าปลายทาง หรือฝ่ายรับยังคงติดต่อกับต้นทาง หรือฝ่ายส่งอยู่ เมื่อเริ่มจะส่งข้อมูลสัญญาณของอะซิงโคนัสจะเป็น 0 หนึ่งช่วงสัญญาณนาฬิกา ซึ่งบิตนี้เราเรียกว่าบิตเริ่มต้น ตามหลังของบิตเริ่มต้นจะเป็นบิตข้อมูลสำหรับ 1 ตัวอักษร ตามหลังบิตข้อมูลก็จะเป็นบิตตรวจข้อผิดพลาด แล้วจะตามด้วยบิตสิ้นสุด ถ้าไม่ใช่บิตตรวจข้อผิดพลาด ตามหลังบิตข้อมูลก็จะเป็นบิตสิ้นสุดเลย หลังจากนั้นถ้าไม่มีข้อมูลส่งออกมาสัญญาณจะกลับไปอยู่ที่สถานะแบบว่างอีก เพื่อรอการส่งข้อมูลต่อไป
จะเห็นว่าการสื่อสารแบบอะซิงโคนัสนี้ มีลักษณะเป็นไปทีละตัวอักษร และสัญญาณที่ส่งออกมา มีบางส่วนเป็นบิตเริ่มต้น บิตสิ้นสุด และบิตตรวจข้อผิดพลาด ทำให้ความเร็วในการส่งข้อมูลต่อวินาทีน้อยลงไป เนื่องจากต้อง สูญเสียช่องทางการสื่อสารให้กับ บิตเริ่มต้น บิตสิ้นสุด และบิตตรวจข้อผิดพลาด (ถ้ามีใช้) ตลอดเวลา การสื่อสาร แบบอะซิงโคนัสนี้มักใช้ในการติดต่อระหว่างคอมพิวเตอร์กับอุปกรณ์รอบข้าง
การสื่อสารแบบอะซิงโคนัส (Asynchronous Transmission)
การสื่อสารแบบอะซิงโคนัส หรือเรียกอีกอย่างหนึ่งว่าเป็น การสื่อสารแบบระบุจุดเริ่มต้น และจุดสิ้นสุด (Start-Stop Transmission) ลักษณะของสัญญาณที่ใช้ในการติดต่อสื่อสารกันจะประกอบไปด้วย บิตเริ่มต้น (start bit) บิตของข้อมูลที่สื่อสาร (transmission data) จำนวน 8 บิต บิตตรวจข้อผิดพลาด(parity bit) และบิตสิ้นสุด (stop bit) สำหรับบิตตรวจสอบข้อผิดพลาดจะใช้หรือไม่ใช้ก็ได้ ดังนั้นสัญญาณจึงต้องประกอบด้วยส่วนประกอบอย่างน้อย 3 ส่วน ดังรูป
รูปที่ 6 การสื่อสารแบบอะซิงโคนัสที่ไม่ได้ใช้พารีตี้บิต
รูปที่ 7 การสื่อสารแบบอะซิงโคนัสที่ใช้พารีตี้บิต
จากรูปจะเห็นว่าขณะที่ไม่มีข้อมูลส่งออกมาสถานะของการส่งจะเป็นแบบว่าง (Idle) ซึ่งจะมีระดับของสัญญาณเป็น 1 ตลอดเวลา เพื่อความแน่ใจว่าปลายทาง หรือฝ่ายรับยังคงติดต่อกับต้นทาง หรือฝ่ายส่งอยู่ เมื่อเริ่มจะส่งข้อมูลสัญญาณของอะซิงโคนัสจะเป็น 0 หนึ่งช่วงสัญญาณนาฬิกา ซึ่งบิตนี้เราเรียกว่าบิตเริ่มต้น ตามหลังของบิตเริ่มต้นจะเป็นบิตข้อมูลสำหรับ 1 ตัวอักษร ตามหลังบิตข้อมูลก็จะเป็นบิตตรวจข้อผิดพลาด แล้วจะตามด้วยบิตสิ้นสุด ถ้าไม่ใช่บิตตรวจข้อผิดพลาด ตามหลังบิตข้อมูลก็จะเป็นบิตสิ้นสุดเลย หลังจากนั้นถ้าไม่มีข้อมูลส่งออกมาสัญญาณจะกลับไปอยู่ที่สถานะแบบว่างอีก เพื่อรอการส่งข้อมูลต่อไป
จะเห็นว่าการสื่อสารแบบอะซิงโคนัสนี้ มีลักษณะเป็นไปทีละตัวอักษร และสัญญาณที่ส่งออกมา มีบางส่วนเป็นบิตเริ่มต้น บิตสิ้นสุด และบิตตรวจข้อผิดพลาด ทำให้ความเร็วในการส่งข้อมูลต่อวินาทีน้อยลงไป เนื่องจากต้อง สูญเสียช่องทางการสื่อสารให้กับ บิตเริ่มต้น บิตสิ้นสุด และบิตตรวจข้อผิดพลาด (ถ้ามีใช้) ตลอดเวลา การสื่อสาร แบบอะซิงโคนัสนี้มักใช้ในการติดต่อระหว่างคอมพิวเตอร์กับอุปกรณ์รอบข้าง |
วันอาทิตย์ที่ 18 พฤษภาคม พ.ศ. 2557
รูปแบบการส่งข้อมูลแบบขนานและแบบอนุกรม
รูปแบบการส่งข้อมูล แบบขนาน
และแบบอนุกรม
การส่งข้อมูลในระบบเครือข่าย สามารถทำได้ 2 ลักษณะ คือ การส่งแบบขนาน และการส่งแบบอนุกรม
การส่งแบบขนาน (parallel transmission) คือการส่งข้อมูลพร้อมกันทีละหลาย ๆ บิตในหนึ่งรอบสัญญาณนาฬิกา โดยการส่งจะรวมบิต 0 และ 1 หลาย ๆ บิตเข้าเป็นกลุ่มจำนวน n บิต ผู้ส่งส่งครั้งละ n บิต ผู้รับจะรับครั้งละ n บิตเช่นกัน ซึ่งจะคล้ายกับเวลาที่เราพูดคุยเราจะพูดเป็นคำ ๆ ไม่พูดทีละตัวอักษร
กลไกการส่งข้อมูลแบบขนานใช้หลักการง่าย ๆ เมื่อส่งครั้งละ n บิต ต้องใ้ช้สาย n เส้น แต่ละบิตมีสายของตนเอง ในการส่งแต่ละครั้งทุกเส้นต้องใช้สัญญาณนาฬิกาอันเดียวกัน ทำให้สามารถส่งออกไปยังอุปกรณ์อื่นพร้อมกันได้
การส่งข้อมูลในระบบเครือข่าย สามารถทำได้ 2 ลักษณะ คือ การส่งแบบขนาน และการส่งแบบอนุกรม
การส่งแบบขนาน (parallel transmission) คือการส่งข้อมูลพร้อมกันทีละหลาย ๆ บิตในหนึ่งรอบสัญญาณนาฬิกา โดยการส่งจะรวมบิต 0 และ 1 หลาย ๆ บิตเข้าเป็นกลุ่มจำนวน n บิต ผู้ส่งส่งครั้งละ n บิต ผู้รับจะรับครั้งละ n บิตเช่นกัน ซึ่งจะคล้ายกับเวลาที่เราพูดคุยเราจะพูดเป็นคำ ๆ ไม่พูดทีละตัวอักษร
กลไกการส่งข้อมูลแบบขนานใช้หลักการง่าย ๆ เมื่อส่งครั้งละ n บิต ต้องใ้ช้สาย n เส้น แต่ละบิตมีสายของตนเอง ในการส่งแต่ละครั้งทุกเส้นต้องใช้สัญญาณนาฬิกาอันเดียวกัน ทำให้สามารถส่งออกไปยังอุปกรณ์อื่นพร้อมกันได้
รูปแสดงการส่งข้อมูลแบบขนาน โดยให้ n=8 โดยทั่วไปแล้วปลายของสายทั้ง 2 ข้างจะถูกต่อด้วยคอนเน็กเตอร์ด้านละ 1 ตัว ข้อดีของการส่งข้อมูลแบบขนานคือ ความเร็ว เพราะส่งข้อมูลได้ครั้งละ n บิต ดังนั้น ความเร็วจึงเป็น n เท่าของการส่งแบบอนุกรม แต่ข้อเสียที่สำคัญคือ ค่าใช้จ่าย ทั้งนี้เพราะต้องใช้สายจำนวน n เส้น
ตัวอย่างการส่งข้อมูลแบบขนาน เช่น การส่งข้อมูลภายในระบบบัสของเครื่องคอมพิวเตอร์ หรือการส่งข้อมูลจากเครื่องคอมพิวเตอร์ไปยังเครื่องพิมพ์ (printer) เป็นต้น
วันศุกร์ที่ 16 พฤษภาคม พ.ศ. 2557
สัญญาณอนาล็อกและสัญญาณดิจิตอล
สัญญาณอนาล็อก
สัญญาณอนาล็อก (Analog Signal) เป็นสัญญาณแบบต่อเนื่อง มีลักษณะเป็นคลื่นไซน์ (sine wave) โดยที่แต่ละคลื่นจะมีความถี่และความเข้มของสัญญาณที่ต่างกัน เมื่อนำสัญญาณข้อมูลเหล่านี้ผ่านอุปกรณ์รับสัญญาณและแปลงสัญญาณก็จะได้ข้อมูลที่ต้องการ ตัวอย่างของการส่งข้อมูลที่มีสัญญาณแบบอนาล็อก คือ การส่งผ่านระบบโทรศัพท์
สัญญาณอนาล็อก เป็นสัญญาณที่มักเกิดขึ้นในธรรมชาติเป็นสัญญาณที่มีความต่อเนื่อง ไม่ได้มีการเปลี่ยนแปลงอย่างรวดเร็ว สัญญาณแบบนี้ เช่น เสียงพูด เสียงดนตรี เป็นต้น
สัญญาณคลื่นนำ (Carrier Wave)
สัญญาณคลื่นนำ หมายถึง พลังงานคลื่นแม่เหล็กไฟฟ้าที่ช่วยนำสัญญาณข้อมูลเคลื่อนย้ายจากที่หนึ่งไปยังอีกที่หนึ่ง เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูง สามารถส่งผ่านสื่อกลางไปในระยะไกลๆได้
การแปลงข้อมูลอนาล็อกให้เป็นสัญญาณอนาล็อก
- การมอดูเลตชนิดเปลี่ยนความสูงของคลื่นนำ (Amplitude Modulation: AM)
- การมอดูเลตชนิดเปลี่ยนความถี่ของคลื่นนำ (Frequency Modulation: FM )
- การมอดูเลตชนิดเปลี่ยนเฟสของคลื่นนำ (Phase Modulation: PM )
การแปลงข้อมูลดิจิตอลให้เป็นสัญญาณอนาล็อก
-
สมัครสมาชิก:
บทความ (Atom)